Minimizing within Convex Bodies Using a Convex Hull Method
نویسندگان
چکیده
منابع مشابه
Minimizing within Convex Bodies Using a Convex Hull Method
We present numerical methods to solve optimization problems on the space of convex functions or among convex bodies. Hence convexity is a constraint on the admissible objects, whereas the functionals are not required to be convex. To deal with, our method mix geometrical and numerical algorithms. We give several applications arising from classical problems in geometry and analysis: Alexandrov’s...
متن کاملConvex Hull, Set of Convex Combinations and Convex Cone
Let V be a real linear space. The functor ConvexComb(V ) yielding a set is defined by: (Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination of V . Let V be a real linear space and let M be a non empty subset of V . The functor ConvexComb(M) yielding a set is defined as follows: (Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination of M . We no...
متن کاملTropical Convex Hull Computations
This is a survey on tropical polytopes from the combinatorial point of view and with a focus on algorithms. Tropical convexity is interesting because it relates a number of combinatorial concepts including ordinary convexity, monomial ideals, subdivisions of products of simplices, matroid theory, finite metric spaces, and the tropical Grassmannians. The relationship between these topics is expl...
متن کاملConvex Hull Computations
The “convex hull problem” is a catch-all phrase for computing various descriptions of a polytope that is either specified as the convex hull of a finite point set in R or as the intersection of a finite number of halfspaces. We first define the various problems and discuss their mutual relationships (Section 26.1). We discuss the very special case of the irredundancy problem in Section 26.2. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2005
ISSN: 1052-6234,1095-7189
DOI: 10.1137/040608039